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PAPER INFO ABSTRACT
] This study numerically investigated the effects of variations in magnetic Reyi
History: number on magnetic field distribution in an enclosure under natural convectior
Submitted201612-15 transfer. The investigated geometry was a-tivoensional enclosure with a hot le
Revised 201#10-07 wall, a cold right wall, and adiabatic top and bottom walls. The fluid was mc
Accepted201710-12 sodium with Pr=0.01. Natural convection heat transfer at a Rayleigh number o
and magnetic Reynolds numbers (Rem) ¢f11A.Q 3, and 105 was considered in the
Keywords: analysis. The gverning equations adopted were continuum, momentum, energy
Magnetic Reynolds magnetic induction equations, which were solved concurrently using the finite va
number: method. For the coupling of velocity and pressure, the revisedisgtitit method
Natural convection; for pressure linked emtions algorithm was employed. Results showed that unc
Magnetic field high magnetic Reynolds number, the rdimensional magnetic fields in the X and

directions were approximately constant because the diffusion of the magnetic po
was greater than the adviect of such potential. As the magnetic Reynolds num
increased, however, the magnetic field in the enclosure reached a magnitude L
to that of the applied magnetic field, exhibited inconstancy, and increased to a
that deviated from 1. Thus,@hRem=101 under a nomimensional magnetic fielc
increased from 0.09 to 6.6 in the X direction and froin164 to 4.05 in Y the
direction.
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strength is a critical factor for crystal formation. Hadid
1. Introduction et al. [2] probed into the effects of a strong vertical

magnetic field on convection nd segregation in

The free convection heat transfer of electricallyertical Bridgeman crystal growth. Bessaih et al. [3]

conducting fluids in enclosures has been the subjectrafmerically examined the effects of the electric
a considerable number of theoretical, experimentajonductivity of walls and the direction of a magnetic
and numerical investigations because of its importanfield on gallium flow. The authors found a
in many technological applications, such ase in considerable reduction in convectiomensity as the
liquid metal blankets for reactors. Another importanihagnetic field increases.
application of the aforementioned process is crystal Ciofalo and Cricchio [4] considered the MHD
growth in the industrial production of semiconductorsiatural convection of liquid RA7Li in a cubical
This particular application has been explored in @avity with a uniform volumetric heat source and an
number of works. Oreper and Szeke[g], for induced current that significantly stretches to the walls
example, showed that a magnetic field suppress%%rmalto the applied magnetic_field flux. Piazza and
natural convection currents and that magnetic fief@ofalo [5. 6] developed a simple wall boundary
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condition to solve electromagnetism in a cavitymagnetic Reynolds number on the magnetic field
without allocating real grid points to electrically distribution and temperature and velocity profiles.
conducting walls. Pirmohammadi et al. [7]
numerically studiednatural convection flow in the 2. Basic Equations
presence of a magnetic field in a tilted enclosure
heated from below and filled with liquid gallium. The The schematic of the examined enclosure is
authors found that at a given inclination anglegepicted in Fig. 1. The cavity is differentially heated,;
convection heat transfer decreases when magnetie left and right walls are isothermatl Ty and Tc,
field intensity incrases. Pirmohammadi et al. [8]respectively (F>Tc); and the horizontal walls are
studied the effects of a magnetic field on buoyancyadiabatic. A magnetic field was applied in the X
driven convection in a differentially heated squardirection.
enclosure. The researchers showed that the heat
transfer mechanisms and flow characteristics in the The governing equations used in this research are
enclosure depend strgly on both the strength of the based on the conservation laws of mass, momentum,
magnetic field and the Rayleigh number. Thegnergy, and induction equatis. The governing
concluded that a magnetic field considerablyquations are provided below:
decreases the average Nusselt number.

An extensive study of mixed convection was pu v

conducted by Selimefendigil et al. [11] for various +w_ @
geometries. Heidary et al. [12] numerically

investigated the laminar flow and convective heat

transfer of Cewater nanofluid in a channel subjectedr( +V7)__7+”(@+uiu)_ i(@_ &)B )
to a uniform magnetic field. The authors revealed that X 2wt omowx oy

the thickness of the thermal boundary layer increases

with the addition of nanoparticles to pure fluid. )
Applying a magnetic field, however, thins the r(uﬂ+vﬂ)=-ﬂp+mﬂ+“")+rgbﬁ T.) ?)
boundary layer because of the increase in velocity ¥ W W

gradient near walls. Seth et al. [13] delved into the 1 (“B UBX)B

combined free and forced convection Couette m X Wy

Hartmann low of a viscous, incompressible, and

electrically conducting fluid. The fluid was placed in a 2

rotating channel with arbitrary conducting walls, and,Cp@ HT +V“T§ k(“ T, KT ) 4
flow was examined under the presence of the Hall px? z

current.Makinde et al. [14] investigated the steady

flow and heat transfer of an electrically conducting

fluid with variable viscosity and electrical (MBx HBx g Wi, g W, 1 KB,
conductivity between two parallel plates in the B W Ty Gg oy
presence of a transverse magnetic field.

In most of the abovenentioned studies, ‘B, B
mathematical and numerical metisowere intended to u”By +VuBy =B, W+By w, 1 (Ll +H ) ©)
determine the influence of any combination of M 24 X wodg
Grashof, Reynolds, Prandtl, and Hartmann numbers
on flow and heat transfer. A technique common to
these studies was the simplification of the magnetic
induction equation on the basis of loReynolds
approximation [15, 16]. The dimensionless magnetic A
Reynolds number Re,_ =s gn) of flow represents

the ratio of advection to diffusion in a magnetic field.
At Ren<<1, advection is relatively unimportant, and a Bo T, H||T.
magnetic field thus tends to relax toward a purely
diffusive state. This relaxation is determined by —»
boundary conditions rather than flow; consequently,
fluid motion has no influence on magnetic field v
distribution. oot X
In this work, a simulation of magnetmnvective S
flow was carried out inside a square cavity. The >
purpose of the current study was to numerically solve ) ) ) )
full magnetic induction, continuum, momentum, and Fig. 1. Geometry a}nd coordlr?ates of cavity configuration
energy equations to investigate the effect of th with magnetic effect

. usz) (5)

2

Adiabatic
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More details regarding Equations (5) and (6) can B, .
be found in [17]. In the equations above, u and v argﬁ Y
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&:B*ﬂ+3*ﬂ

velocity components, p denotes the pressure, T is thep, B, B!

temperature, r represents the density, g is the Ren(uxz

gravitational accelerationy; is the viscosity,p is the

py

Coeﬁ'C'?nt.Of thermal ex;.)ansllorBX stands for the To calculate the magnetic field instead of solving
magnetic field in the X direction, angy represents Equations (12) and (13), we can use the magnetic
the magnetic field in the Y direction. Meover, k potential vector f) as follows:

pertains to the thermal conductivity, Cp is the specifi%': P33 A

heat capacitys is the electrical conductivity, angy

denotes the magnetic permeability.
3. The dimensionless variables included in the
analysis ar@efined thus:

_ FCpuH | rcpH

H H k Kk
P:’szsz,q—T'Tc , Re, =s mm,
k? T,-T.
« B
B ==, g =2 pr=X ()
B, " B re,

c.gb(T. -T )H?
Ra=z 29T TR 'Ha:BOH\F
km m

On the basis of these variables, the goverr
equations are expressed in dimensionless form
follows:

E+ﬂ:o (8)
pX oy
WU P KU pu
U +vEeE =T p +
o T e T ©)
- HaZLrZB;(&_ LBX)

Re, " IX Y
VA e VeV
U +vEE = = 4p + +RaP
X Vi Ty TPty e) tRaPY (10)
+Ha2i X&_ IJBX)

Re, * pX MY

2 2

Uu—q+vu—q=uz+“z 11
Xy pxX® o px
pB pB pJ pJ

x vy Ex gt 2 Ll
Y Yy TR By (12)
Pr WB. VB,
Re, pX* py?

(14)

Thus, Equations (12) and (13) are converted into
Equation (15) in the following manner:

UHA L BA _ Pr A A (16)
X WY Re, uX* pY?
Theboundary conditions are
A=Y,szl&=03t><=0 17
X

A:Y,szl,&zoatle (18)
pX

AZO,By:O,&:OatYZO (19
e

A=18,=0: —pat Y =1 (20)
uy

U & V =O0atall walls (21)

(X=0,X=1,Y =0,Y =1)

9(0.Y) =19 =0 yg| _, ug o (22

HY Y=0 “Y Y=1

4. Numerical Procedures

The governing equations associated with the
boundary conditions were solved numerically using
the control voluméased finite volume method. The
hybrid scheme, which is a combination of the central
difference and upwind schemes, was used to discretize
convection terms. A staggered grid system, in which
velocity components are stored midway between scalar
storage locations, was also employed. The-kdiwn
revised semimplicit method for pressure linke
equations algorithm was adopted in coupling the
velocity field and pressure in the momentum
equations. The solution of the fully coupled discretized
equations was iteratively obtained using the- tri
diagonal matrix algorithm. The values of residuals
were checked on the basis of physical variables, such
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as temperature, pressure, and velocity. Convergence In the comparison of results, the magnetic field
was considered achieved when the summation igfduced by the motion of the electrically conducting
residuals was less thant0as was the case for mosfluid was disregarded. Our findings showed good
of the dependent variables. Simulations wergdreement with those of Sarris. The relative errors in

conductedwith cell numbers ranging from 31x31 tothe average Nusselt number and the maximum

. . absolutevalue of the stream function of Sarris work
61><61' at.a Raylglgh number (Ra) of1Big. 2 shows [18] and the present model were 0.8% and 1.8%,
the grid distributions of the cavity.

respectively. In the current research, three magnetic
Reynolds numbers, namely,'310103, and 16°, were
adopted. The fluid used was liquid sodium with

. , . Pr=0.01 ad Ra=106.
To verify the accuracy of the numerical technique Fig. 4 shows the contours of AxBand B at

used to solve the problem considered in this weark, po _1455 ang Ha=80. As expected, because the

simulation of magnetsonvective flow was carried N . -
) mag magnetic field was very small, the magnetic potential
out; the examined structure was a square enclos%e

with a horizontal temperature gradient and wasom.the left t_o the right si_des qf the cgvity diffused,
simulated in the presence of the magnetic fiel@"d Its quantity remained identical to thatroduced
reported by Sarris [18]. Fig. 3 plots the streamlinedto the poundary cgnc!ltlons. F!wd flow did not affect
and isotherms of the solution derived in the currentn® @pplied magnetic field. Variables Bnd By were

research and the results obtained by Sarris f&Rlculated on the basis of the gradient of A; thus, they
Ra=7x16, Ha=100, and Pr=0.7. were constant in the entire cavity. Specifically,vas

approximately equabt1, and B was equal to 0. The
magnetic field in the cavity was preserved.

Fig. 5 illustrates the contours of AxBand B at
Ren=10°% and Ha=80. Given that the Revas small,
the ratio of the diffusion of the magnetic potential to
its advection was lge. Consequently, the contours of
A were approximately horizontal, ang Bnd B, in the
cavity were constant. The maximum deviation af B
from 1 was 2.73%, and the maximum deviation ¢f B
from O was 9.19%.

The contours of A, B and B at Re:=10! and
Ha=80 are presented in Fig. 6. The advection of the
magnetic potential was greater than its diffusion,
thereby generating horizontal contours. The magnetic
field was unequal to the applied magnetic field and
was inconstant in the cavity. The magndigtd in the
X direction (B, therefore varied from 0.55 to 6.6, and
the magnetic field in the Y direction {Bvaried from
11.164 to 4.05. The concentration of the dntours
near the horizontal walls was greater than that near the
Vi vertical walls. The mgnetic field was stronger near
Nu = 3.20 the adiabatic walls. Furthermore, the concentration of
) the B, contours near the vertical walls was higher than
(a) Sarrisos wo rygtnear the horizontal walls.

The advection of the magnetic potential was greater
than its diffusion, thereby pducing norhorizontal
contours. The magnetic field was unequal to the
applied magnetic field and was inconstant in the
cavity. As a result, the magnetic field in the X
direction (B) varied from 0.55 to 6.6, and the
magnetic field in the Y direction (B varied fromi
_ 1.164 to 4.05. The concentration of the &ntours
e =710 Nu=3.174 near the horizontal walls was higher than that near the
(b) Present study vertical walls. The magnetic field was stronger near
Fig. 3. Comparison of isotherms and streamlines in the p%%e adiabatic walls. The concentration of thg B
work and Sarri sSansHa100 d >;:on(tours near the vertical walgas greater than that
near the horizontal walls.

5. Results and Discussion
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Fig. 4.Contours of variables: (a) contours of magnetic Fig. 5.Contours of variables: (a) contours of magnetic
potential A, (b)contours of magnetic field in the X directio  potential A, (b) ontours of magnetic field in the x directiol
(Bx), and (c) ontours of magnetic field in the Y direction (Bx), and (c) ontours of magnetic field in the Y direction
(By) at Ren=10°and Ha=80 (By) at Rew=103 and Ha=80
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Fig. 7. Velocity profile aRa=1¢, Ha=80, and different
magnetic Reynolds numbers

Fig. 8. Temperature velocity profile Ra=16, Ha=80, and
different magnetic Reynolds numbers

Fig. 8 illustrates the midheight temperature
profiles at Ra=1%¥) Ha=80, and different magnetic
Reynolds numbersAt Ren=0.1, the temperature
gradient and the slope of the temperature profile near
the hot wall were higher than those at Re0'® and
Ren=10°5.

()

Fig. 6. Contoursf variables: (a) contours of magnetic 6. Conclusion
potential A, (b) ontours of magnetic field in the X
direction(Bx), and (c) ontours of magnetic field in the Y

direction(By) at Re=10" and Ha=80 This study analyzed the steady, laminar, and

magneteconvective flow of a viscous fluid in a

cavity. Temperature gradient was applied on the two
. idei : ' opposing regular walls of the enclosure, whereas
Fig. 7 presents the ight velocityprofiles at adiabatic conditions were maintained in the other

Ra=10, Ha=80, and differept magnetiF: ReynOIdSWalls. A magnetic field was applied in the X direction.
numbers. At Rg=0.1, the maximum velocity near the Magnetic Reynolds numbers of 40103, and 1¢°

hot wall was higher than those at /240° and \ere adopted, and the fluid used was liquid sodium
Ren=10°. The magnetic field near the hot wall wasyjth Pr=0.01 and Ra=%0

weaker than that near the adiabatic' walls (B@)), As the Re increased, the advection of the
thus, the Lorentz force was very low in these regionsmagnetic potential increased, andriations in the



