
1. Introduction  

The free convection heat transfer of electrically 

conducting fluids in enclosures has been the subject of 

a considerable number of theoretical, experimental, 

and numerical investigations because of its importance 

in many technological applications, such as use in 

liquid metal blankets for reactors. Another important 

application of the aforementioned process is crystal 

growth in the industrial production of semiconductors. 

This particular application has been explored in a 

number of works. Oreper and Szekely [1], for 

example, showed that a magnetic field suppresses 

natural convection currents and that magnetic field 

strength is a critical factor for crystal formation. Hadid 

et al. [2] probed into the effects of a strong vertical 

magnetic field on convection and segregation in 

vertical Bridgeman crystal growth. Bessaih et al. [3] 

numerically examined the effects of the electric 

conductivity of walls and the direction of a magnetic 

field on gallium flow. The authors found a 

considerable reduction in convection intensity as the 

magnetic field increases.   

 Ciofalo and Cricchio [4] considered the MHD 

natural convection of liquid Pbï17Li in a cubical 

cavity with a uniform volumetric heat source and an 

induced current that significantly stretches to the walls 

normal to the applied magnetic field flux. Piazza and 

Ciofalo [5, 6] developed a simple wall boundary 
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condition to solve electromagnetism in a cavity 

without allocating real grid points to electrically 

conducting walls. Pirmohammadi et al. [7] 

numerically studied natural convection flow in the 

presence of a magnetic field in a tilted enclosure 

heated from below and filled with liquid gallium. The 

authors found that at a given inclination angle, 

convection heat transfer decreases when magnetic 

field intensity increases. Pirmohammadi et al. [8] 

studied the effects of a magnetic field on buoyancy-

driven convection in a differentially heated square 

enclosure. The researchers showed that the heat 

transfer mechanisms and flow characteristics in the 

enclosure depend strongly on both the strength of the 

magnetic field and the Rayleigh number. They 

concluded that a magnetic field considerably 

decreases the average Nusselt number. 

 An extensive study of mixed convection was 

conducted by Selimefendigil et al. [11] for various 

geometries. Heidary et al. [12] numerically 

investigated the laminar flow and convective heat 

transfer of Cu-water nanofluid in a channel subjected 

to a uniform magnetic field. The authors revealed that 

the thickness of the thermal boundary layer increases 

with the addition of nanoparticles to pure fluid. 

Applying a magnetic field, however, thins the 

boundary layer because of the increase in velocity 

gradient near walls. Seth et al. [13] delved into the 

combined free and forced convection Couetteï

Hartmann flow of a viscous, incompressible, and 

electrically conducting fluid. The fluid was placed in a 

rotating channel with arbitrary conducting walls, and 

flow was examined under the presence of the Hall 

current.  Makinde et al. [14] investigated the steady 

flow and heat transfer of an electrically conducting 

fluid with variable viscosity and electrical 

conductivity between two parallel plates in the 

presence of a transverse magnetic field. 

 In most of the above-mentioned studies, 

mathematical and numerical methods were intended to 

determine the influence of any combination of 

Grashof, Reynolds, Prandtl, and Hartmann numbers 

on flow and heat transfer. A technique common to 

these studies was the simplification of the magnetic 

induction equation on the basis of low Reynolds 

approximation [15, 16]. The dimensionless magnetic 

Reynolds number ( nsm0mRe = ) of flow represents 

the ratio of advection to diffusion in a magnetic field. 

At Rem<<1, advection is relatively unimportant, and a 

magnetic field thus tends to relax toward a purely 

diffusive state. This relaxation is determined by 

boundary conditions rather than flow; consequently, 

fluid motion has no influence on magnetic field 

distribution.  

 In this work, a simulation of magneto-convective 

flow was carried out inside a square cavity. The 

purpose of the current study was to numerically solve 

full magnetic induction, continuum, momentum, and 

energy equations to investigate the effect of the 

magnetic Reynolds number on the magnetic field 

distribution and temperature and velocity profiles. 

2. Basic Equations 

The schematic of the examined enclosure is 

depicted in Fig. 1. The cavity is differentially heated; 

the left and right walls are isothermal at TH and TC, 

respectively (TH>TC); and the horizontal walls are 

adiabatic. A magnetic field was applied in the X 

direction. 
 

 The governing equations used in this research are 

based on the conservation laws of mass, momentum, 

energy, and induction equations. The governing 

equations are provided below: 
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Fig. 1. Geometry and coordinates of cavity configuration 

with magnetic effect 
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 More details regarding Equations (5) and (6) can 

be found in [17]. In the equations above, u and v are 

velocity components, p denotes the pressure, T is the 

temperature, r represents the density, g is the 

gravitational acceleration, m is the viscosity, b is the 

coefficient of thermal expansion, 
xB  stands for the 

magnetic field in the X direction, and 
yB  represents 

the magnetic field in the Y direction. Moreover, k 

pertains to the thermal conductivity, Cp is the specific 

heat capacity, s is the electrical conductivity, and 
0m  

denotes the magnetic permeability. 

3.  The dimensionless variables included in the 

analysis are defined thus: 
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 On the basis of these variables, the governing 

equations are expressed in dimensionless form as 

follows: 
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To calculate the magnetic field instead of solving 

Equations (12) and (13), we can use the magnetic 

potential vector (A
C

) as follows: 
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 Thus, Equations (12) and (13) are converted into 

Equation (15) in the following manner: 
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 The boundary conditions are 
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4. Numerical Procedures 

 The governing equations associated with the 

boundary conditions were solved numerically using 

the control volume-based finite volume method. The 

hybrid scheme, which is a combination of the central 

difference and upwind schemes, was used to discretize 

convection terms. A staggered grid system, in which 

velocity components are stored midway between scalar 

storage locations, was also employed. The well-known 

revised semi-implicit method for pressure linked 

equations algorithm was adopted in coupling the 

velocity field and pressure in the momentum 

equations. The solution of the fully coupled discretized 

equations was iteratively obtained using the tri-

diagonal matrix algorithm. The values of residuals 

were checked on the basis of physical variables, such 
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as temperature, pressure, and velocity. Convergence 

was considered achieved when the summation of 

residuals was less than 10ï4, as was the case for most 

of the dependent variables. Simulations were 

conducted with cell numbers ranging from 31×31 to 

61×61 at a Rayleigh number (Ra) of 105. Fig. 2 shows 

the grid distributions of the cavity. 

5. Results and Discussion 

 To verify the accuracy of the numerical technique 

used to solve the problem considered in this work, a 

simulation of magneto-convective flow was carried 

out; the examined structure was a square enclosure 

with a horizontal temperature gradient and was 

simulated in the presence of the magnetic field 

reported by Sarris [18]. Fig. 3 plots the streamlines 

and isotherms of the solution derived in the current 

research and the results obtained by Sarris for 

Ra=7×105, Ha=100, and Pr=0.7.  

 

 
Fig. 2. Grid distributions of the cavity 

 

 

23.7max =y  

 

20.3=Nu  

(a) Sarrisôs work [18] 

 

10.7max =y  

 

174.3=Nu  

(b) Present study 
 

Fig. 3. Comparison of isotherms and streamlines in the present 

work and Sarrisôs study at Ra=7Ĭ105 and Ha=100 

 

 In the comparison of results, the magnetic field 

induced by the motion of the electrically conducting 

fluid was disregarded. Our findings showed good 

agreement with those of Sarris. The relative errors in 

the average Nusselt number and the maximum 

absolute value of the stream function of Sarris work 

[18] and the present model were 0.8% and 1.8%, 

respectively. In the current research, three magnetic 

Reynolds numbers, namely, 10ï1, 10ï3, and 10ï5, were 

adopted. The fluid used was liquid sodium with 

Pr=0.01 and Ra=105. 

 Fig. 4 shows the contours of A, Bx, and By at 

Rem=10ï5 and Ha=80. As expected, because the 

magnetic field was very small, the magnetic potential 

from the left to the right sides of the cavity diffused, 

and its quantity remained identical to that introduced 

into the boundary conditions. Fluid flow did not affect 

the applied magnetic field. Variables Bx and By were 

calculated on the basis of the gradient of A; thus, they 

were constant in the entire cavity. Specifically, Bx was 

approximately equal to 1, and By was equal to 0. The 

magnetic field in the cavity was preserved. 

 Fig. 5 illustrates the contours of A, Bx, and By at 

Rem=10ï3 and Ha=80. Given that the Rem was small, 

the ratio of the diffusion of the magnetic potential to 

its advection was large. Consequently, the contours of 

A were approximately horizontal, and Bx and By in the 

cavity were constant. The maximum deviation of Bx 

from 1 was 2.73%, and the maximum deviation of By 

from 0 was 9.19%.  

 The contours of A, Bx, and By at Rem=10ï1 and 

Ha=80 are presented in Fig. 6. The advection of the 

magnetic potential was greater than its diffusion, 

thereby generating horizontal contours. The magnetic 

field was unequal to the applied magnetic field and 

was inconstant in the cavity. The magnetic field in the 

X direction (Bx) therefore varied from 0.55 to 6.6, and 

the magnetic field in the Y direction (By) varied from 

ï1.164 to 4.05. The concentration of the Bx contours 

near the horizontal walls was greater than that near the 

vertical walls. The magnetic field was stronger near 

the adiabatic walls. Furthermore, the concentration of 

the By contours near the vertical walls was higher than 

that near the horizontal walls. 

The advection of the magnetic potential was greater 

than its diffusion, thereby producing non-horizontal 

contours. The magnetic field was unequal to the 

applied magnetic field and was inconstant in the 

cavity. As a result, the magnetic field in the X 

direction (Bx) varied from 0.55 to 6.6, and the 

magnetic field in the Y direction (By) varied from ï

1.164 to 4.05. The concentration of the Bx contours 

near the horizontal walls was higher than that near the 

vertical walls. The magnetic field was stronger near 

the adiabatic walls. The concentration of the By 

contours near the vertical walls was greater than that 

near the horizontal walls. 
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(a)  

 

(b) 

 

( c) 

Fig. 4. Contours of variables: (a) contours of magnetic 

potential A, (b) contours of magnetic field in the X direction 

(Bx), and (c) contours of magnetic field in the Y direction 

(By) at Rem=10ï5 and Ha=80 

 

 

(a)  

 

(b)  

 

(c)  

Fig. 5. Contours of variables: (a) contours of magnetic 

potential A, (b) contours of magnetic field in the x direction 
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(a)  

 

(b)  

 

(c)  

Fig. 6. Contours of variables: (a) contours of magnetic 

potential A, (b) contours of magnetic field in the X 

direction (Bx), and (c) contours of magnetic field in the Y 

direction (By) at Rem=10ï1 and Ha=80 

 

  Fig. 7 presents the mid-height velocity profiles at 

Ra=105, Ha=80, and different magnetic Reynolds 

numbers. At Rem=0.1, the maximum velocity near the 

hot wall was higher than those at Rem=10ï3 and 

Rem=10ï5. The magnetic field near the hot wall was 

weaker than that near the adiabatic walls (Fig. 6(b)); 

thus, the Lorentz force was very low in these regions. 

 

 
Fig. 7. Velocity profile at Ra=105, Ha=80, and different 

magnetic Reynolds numbers 

 

  

 
Fig. 8. Temperature velocity profile at Ra=105, Ha=80, and 

different magnetic Reynolds numbers 

 

 Fig. 8 illustrates the mid-height temperature 

profiles at Ra=105, Ha=80, and different magnetic 

Reynolds numbers. At Rem=0.1, the temperature 

gradient and the slope of the temperature profile near 

the hot wall were higher than those at Rem=10ï3 and 

Rem=10ï5. 

6. Conclusion 

 This study analyzed the steady, laminar, and 

magneto-convective flow of a viscous fluid in a 

cavity. Temperature gradient was applied on the two 

opposing regular walls of the enclosure, whereas 

adiabatic conditions were maintained in the other 

walls. A magnetic field was applied in the X direction. 

Magnetic Reynolds numbers of 10ï1, 10ï3, and 10ï5 

were adopted, and the fluid used was liquid sodium 

with Pr=0.01 and Ra=105. 

As the Rem increased, the advection of the 

magnetic potential increased, and variations in the 
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