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1. Introduction 

The Natural convection has been analyzed 

extensively by many  researchers. Sometimes, 

along with the free convection currents caused by 

difference in temperature, the flow is also affected 

by the differences in concentration or material 

constitution. There are many situations where the 

convection heat transfer phenomena are 

accompanied by mass transfer also. When mass 

transfer takes place in a fluid  ??, the mass is 

transferred purely by molecular diffusion resulting 

from concentration gradients. For low concentration 

of the mass in the fluid and low mass transfer rates, 

the convective heat and mass transfer processes are 

similar in nature. A number of investigations have 

already been carried out with combined heat and 

mass transfer under the assumption of different 

physical situations. The illustrative examples of 

mass transfer can be found in the book of Cussler 

[1]. The Free convection resulting from the 

combined thermal and mass buoyancy forces has 

received significant attention of engineers and 

scientists due to many applications in engineering 

and technological processes. The significant 

applications include the thermal processes in the 

vertical mounting board electronic components, 

channel-chimney systems, thermal comfort 

dynamics in building services, nuclear reactor 

thermal hydraulics and frost formation. The 

Theoretical investigation of unsteady free 

convection flow due to heat and mass transfer in 

vertical parallel plate channel received less 

attention than numerical investigations. It is well 

known that the effects of radiation on free 

convection flow problems  have  become more 

important industrially. Many engineering processes 
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occur at high temperatures, the knowledge of 

radiative heat transfer plays significant role in the 

design of equipments. Nuclear power plants, gas 

turbines and various propulsion devices for aircraft, 

missiles, satellites and space vehicles are examples 

of such engineering processes. At high operating 

temperature, the radiation effect can be quite 

significant. The study of free convection flow with 

radiative heat and mass transfer also plays an 

important role in biological sciences. The Effects of 

various parameters on human body can be studied 

and appropriate suggestions can be given to the 

persons working in hazardous areas with noticeable 

effects of magnetism and heat variation. 

The results of theoretical analysis can be served 

as a guide for both experimental and numerical 

investigations. The Natural convection heat and 

mass transfer in a vertical channel consisting of two 

vertical parallel plates, one porous and the other 

non-porous, with opposing buoyancy forces was 

studied numerically by using finite difference 

method and experimentally by Lee et al. [2]. They 

observed that the mass transfer from the porous 

wall resulted in a downward flow while the heat 

transfer from the non-porous wall resulted in an 

opposing upward flow. The effects of latent heat 

transfer associated with the thin liquid film 

vaporization on the heat transfer in natural 

convection flows driven by the combined buoyancy 

forces of thermal and mass diffusion between 

vertical parallel plates by using an implicit finite 

difference method has been studied by Yan et 

al.[3]. A numerical analysis for developing laminar 

flow between vertical parallel plates with natural 

convection heat and mass transfer for uniform wall 

temperature and the concentration  have been 

presented by Nelson and Wood [4]. Nelson and 

Wood [5] have also obtained an analytical solution 

for fully developed heat and mass transfer natural 

convection flow between vertical parallel plates 

with asymmetric boundary conditions. Yan and Lin 

[6] have carried out a numerical analysis to 

investigate the effects of latent heat transfer and 

finite liquid film evaporation on the channel wall 

and on the natural convection heat and mass 

transfer. They specifically presented the results for 

ethanol film evaporation and water film 

evaporation. Yan and Lin [7] have also carried out a 

numerical study to investigate the evaporative 

cooling of liquid falling film through interfacial 

heat and mass transfer in natural convection 

channel flows. The results for heat and mass 

transfer rates have specifically presented for ethanol 

film evaporation and the predicted results were also 

contrasted with the experimental results obtained by 

Yan and Lin [8]. Desrayaud and Lauriat [9] have 

made a numerical study to investigate buoyancy 

induced by heat and mass transfer analogy for 

condensation of  humid air flowing in a vertically 

heated channel based on thin-film assumptions. A 

finite-difference analysis has been presented by 

Salah El-Din [10] to investigate the effect of the 

thermal and mass buoyancy forces on the 

development of laminar mixed convection between 

two vertical parallel plates with uniform heat and 

mass fluxes. The closed-form analytic solutions 

have been derived by Cheng [11] to examine the 

effect of the vortex viscosity parameter and the 

buoyancy ratio on the fully developed natural 

convection heat and mass transfer of a micropolar 

fluid in a vertical channel with asymmetric wall 

temperatures and concentrations. Narahari [12] has 

presented an analytical study by using the Laplace 

transform technique for the transient free 

convection flow of a viscous incompressible fluid 

between two vertical parallel plates in the presence 

of constant temperature and mass diffusion. The 

natural convection due to heat and mass transfer 

between vertical parallel plates has not received 

much attention despite important applications in 

many engineering systems. 

The main purpose of the present investigation is 

to study the unsteady free convection flow of an 

optically dense viscous incompressible fluid 

between two long vertical parallel plates with 

variable temperature and mass diffusion in the 

presence of thermal radiation. Assume that the flow 

is laminar and the fluid is gray absorbing-emitting 

radiation but no scattering medium. It is considered 

that the fluid to be optically thick instead of 

optically thin in this problem. Rosseland diffusion 

approximation is used to describe the radiative heat 

flux in the energy equation. The Closed form 

solutions of the initial and boundary value problems 

that govern the flow are obtained by means of the 

Laplace transform technique. The effects of 

pertinent flow parameters on the fluid velocity, 

temperature and mass concentration profiles are 

presented graphically and the physical aspects of 

the problem are discussed. 

2. Formulation of the problem and its 
solutions 
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Consider the unsteady free convection flow of a 

viscous incompressible fluid between two long 

vertical parallel plates separated by a distance h . 

Choose a Cartesian  coordinates  system with the x

- axis taken along one of the plates of the channel 

and the y -axis normal to the plates (See Fig. 1). 

Initially, at time 0t , both the plates and the fluid 

are assumed to be at the same temperature hT  and 

concentration hC . At time 0>t , the temperature 

and mass concentration at the plate at 0=y   have 

been raised to  
0

0
t

t
TTT hh   and  

0

0
t

t
CCC hh  , 

respectively, 0T  and 0C  the constant temperature 

and mass concentration and 0t  the characteristic 

time while that of the other plate at hy =  continues 

to remain at the initial temperature hT  and mass 

concentration hC . The flow is considered to be 

laminar without any pressure gradient in the flow 

direction. It is also assumed that the radiative heat 

flux in the x - direction is negligible as compared 

to that in the y - direction. The density is assumed 

to be linearly dependent on mass concentration and 

temperature buoyancy forces in the equations of 

motion. This approximation is exact enough for 

both dropping liquid and gases at small values of 

the temperature and diffusion differences. As the 

plates are long along x  direction infinitely, the 

velocity and temperature fields are functions of y  

and t  only. 

It should be noted that the temperature and 

concentration differences were small enough in the 

analyzed heat and mass transfer process. Therefore,  

use of the Boussinesq approximation and analogy 

between heat and mass transfer processes  is 

pertinent. The unsteady natural convection flow of 

a radiating fluid, under usual Boussinesq 

approximation, is governed by the following 

equations: 
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
 (3) 

where u  is the fluid velocity in the x -direction, 

T  the temperature and C  the mass concentration 

of the fluid, g  the acceleration due to gravity,    

 
Fig. 1: Geometry of the problem 

the coefficient of thermal expansion,   coefficient 

of volumetric expansion due to concentration 

change,   the kinematic viscosity,   the fluid 

density, k  the thermal conductivity, 
pc  the 

specific heat at constant pressure, D  mass 

diffusivity and rq  the radiative heat flux. The heat 

due to viscous dissipation is neglected for small 

velocities in the energy equation (2). 

The study of combined heat and mass transfer 

problems are important in many processes such as 

drying, evaporation at the surface of water body, 

energy transfer in a wet cooling tower, 

solidification of binary alloy, dispersion of 

dissolved materials, drying and dehydration 

operations in chemical food processing plants and 

combustion of atomized liquid fuels. 

The initial and boundary conditions are  

0: = 0, = , = for all 0 ,h ht u T T C C y h    

(4)    0 0

0 0

> 0 : = 0, = , = at = 0,h h h h

t t
t u T T T T C C C C y

t t
   

 

> 0: 0, = , = at =
h h

t u T T C C y h  

In order to simplify the physical problem, the 

optically thick radiation limit is considered in the 

present analysis. The radiative heat flux for an 

optically thick fluid can be found from Rosseland 

approximation [13] and its formula is derived from 

the diffusion concept of radiative heat transfer in 

the following way: 

,
3

4
=

4

y

T

k
qr









 (5) 

where   is the Stefan-Boltzman constant and 
k  the 

spectral mean absorption coefficient of the medium. It 

should be noted that by using the Rosseland 

approximation we limit our analysis to optically thick 
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fluids. If the temperature differences within the flow are 

sufficiently small, then the equation (5) can be linearized 

by expanding 
4T  into the Taylor series about the 

temperature hT  and neglecting higher order terms to give 

.34 434
hh TTTT   (6) 

by using the equations (5) and (6), equation (2) 

becomes  
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By Introducing the dimensionless variables  
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equations (1), (7) and (3) become  
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 is the radiation parameter, 

k
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2
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 the mass 

Grashof number, 
D

Sc
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=  Schmidt number and 

43

3
=

R

RPr
 . 

The corresponding initial and the boundary 

conditions are  

10: = 0, = 0, = 0, for all 0 1u     

1> 0: = 0, = , = at = 0,u       

1> 0: = 0, = 0, = 0 at =1.u     

(12) 

by using Laplace transformation, equations (9) - (11) 

become 
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The corresponding boundary conditions for 1u ,   

and   are 

 1 2 2

1 1
= 0, = , = at = 0,u

s s
    

1 = 0, = 0, = 0 at =1u     

(17) 

The solution of the equations (13)- (15) subject to the 

boundary conditions (17) are given by  
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where na 2=  and  22= nb  . 

The inverse Laplace transforms of the equations (18)- 

(19) give the solution for the velocity, temperature and 

concentration distributions as 
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and   is a dummy variable and 1f  and 2f  are the 

dummy functions and erfc (.)  is the complementary 

error function. 

2.1  Solution when Schmidt number Sc=1 

The solution for the velocity by equation (23) is not 

valid for 1=Sc . Since the Schmidt number is a measure 

of the relative importance of the viscosity and mass 

diffusivity of the fluid, the case 1=Sc  corresponds to 

those fluids whose momentum and concentration 

boundary layer thicknesses are of the same order of 

magnitude. Therefore, the solution for the velocity field 

when 1=Sc  has to be obtained separately from 

equations (9)-(11) subject to the initial and boundary 

conditions (12) and given by  
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and 3f  is the dummy function and 2f  is given by (24). 

3. Results and Discussions 

In order to  obtain the clear vision of the 

physical problem, a parametric study is performed 

and the obtained numerical results are displayed 

graphically. In Figs. 2-11, We have presented the 

non-dimensional fluid velocity 1u  and the fluid 

temperature for several values of radiation 

parameter R , Grashof number Gr , mass Grashof 

number Gc , Prandtl number Pr , Schmidt number 

Sc  and time .The values of Schmidt number are 

chosen to represent the presence of species by 

hydrogen (0.24), water  vapor (0.62), ammonia 

(0.78) and carbon dioxide (0.96) at temperature 
o25 C and the pressure 1atmosphere. The values of 

Pr are chosen 0.72 and 7.1 for air and water, 

respectively, at temperature o20 C and pressure 1 

atm.. The values of radiation parameter and the 

chemical reaction parameter are chosen arbitrarily. 

It is revealed in Fig. 2 that the absolute value of the 

fluid velocity 1u increases with an increase in the 

radiation parameter R . It is clearly seen that the 

velocity decreases with increasing value of R , i.e. 

the larger value of R  is causedthe thicker the  

 
Fig. 2: Velocity profiles 1u  for different R  when 

5=Gr , 3=Gc , 0.72=Pr , 0.96=Sc  and 0.5=  

momentum boundary layer size. This is because an 

increase in R  is caused an increase in the 

Rosseland mean radiation absorption coefficient 
k  for fixed   and hT . It is also clear that the 

radiation has significant effect on the fluid velocity 

profiles in the presence of variable temperature and 

mass diffusion. The influence of the thermal 

Grashof number Gr  on the fluid velocity 1u  is 

evident from Fig. 3. It can be observed that the the 

absolute value of fluid velocity 1u  increases for the 

increasing values of Gr . It is true physically as the 

thermal Grashof number Gr  describes the ratio of 

bouyancy forces to viscous forces. Therefore, an 

increase in the values of Gr  leads to increase in 

buoyancy forces, consequently the fluid velocity 

increases. Here the thermal Grashof number 

represents the effect of free convection currents. 

Physically, 0>Gr  means the heating of the 

cooling fluid  of the boundary surface, 0<Gr  

means the cooling of the heating fluid  of the 

boundary surface and 0=Gr  corresponds the 

absence of free  

 
Fig. 3: Velocity profiles 1u  for different Gr  when 
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2=R , 3=Gc , 0.72=Pr , 0.96=Sc  and 0.5=  

convection current. It is also noticed from Fig. 3 

that there is a reverse type of flow in the vertical 

channel for small values of Gr . Fig. 4 shows that 

the absolute value of the fluid velocity 1u  

decreases for the increasing values of mass Grashof 

number Gc .  This means that the mass buoyancy 

force opposes the fluid flow in the vertical channel 

in the presence of variable mass diffusion. Fig. 5 

shows that the absolute value of the fluid velocity 

1u  decreases with an increase in the Prandtl 

number Pr . Physically, it is true as the Prandtl 

number describes the ratio between momentum 

diffusivity and thermal diffusivity and hence 

controls the relative thickness of the momentum 

and the thermal boundary layers. As Pr  increases 

the viscous forces (momentum diffusivity) 

dominate the thermal diffusivity  consequently 

decreases the fluid velocity. The values of Schmidt 

number Sc  were chosen to be 0.45=Sc , 0.62 , 0.78  

and 0.96 , that represent the most common  

 
Fig. 4: Velocity profiles 1u  for different Gc  when 

5=Gr , 2=R , 0.72=Pr , 0.96=Sc  and 0.5=  

 
Fig. 5: Velocity profiles 1u  for different Pr  

when 5=Gr , 3=Gc , 2=R , 0.96=Sc  and 0.5=  

diffusing chemical species . It is seen from Fig. 6 

that the absolute value of the fluid velocity 1u  

decreases with an increase in Schimdt number Sc . 

The physics of this observation is that the increased 

Schmidt number decreases the molecular 

diffusivityof the chemical species, which reduces 

the fluid velocity finally. Also, an increase of Sc  (a 

predominance of the diffusive transport of 

momentum over that of mass) represents an 

increase in the momentum boundary layer 

thickness with a fixed species diffusivity and this 

causes the decrease in fluid velocity. Fig. 7 reveals 

that the absolute value of the fluid velocity 1u  

increases near plate and it oscillates away from the 

plate with an increase in time  . It is observed 

from Fig. 7 that as time increases, the absolute 

value of the fluid velocity in the vertical channel 

accelerates the upward direction. This is due to 

increasing buoyancy effects in the vertical channel  

with time increasing. 

 
Fig. 6: Velocity profiles 1u  for different Sc  

when 5=Gr , 3=Gc , 0.72=Pr , 2=R  and 0.5=  

 
Fig. 7: Velocity profiles 1u  for different   

when 5=Gr , 3=Gc , 0.72=Pr , 0.96=Sc  and 

2=R  
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The temperature variations are presented in 

Figs. 8-10 for different values of the radiation 

parameter R , Prandtl number Pr  and time. It is 

seen from Fig. 8 that the fluid temperature 

decreases with an increase in radiation parameter 

R . This is in agreement with  thisfact that radiation 

provides an additional means to diffuse energy. 

From the definition of R , an increase in the value 

of R  implies to decreasing the radiation effects. In 

the presence of radiation, the thermal boundary 

layer always found to thicken which implies that 

the radiation provides an additional means to 

diffuse energy. This means that the thermal 

boundary layer decreases and there is more uniform 

temperature distribution across the boundary layer. 

Fig. 9 shows that the fluid temperature   decreases 

with an increase in Prandtl number Pr . The reason 

is that smaller values of Pr  are equivalent to 

increase in the thermal conductivity of the fluid and 

therefore, the heat is able to diffuse away from the 

heated surface more rapidly for higher values Pr . 

Hence in the case of smaller Prandtl numbers the 

 
Fig. 8: Temperature profiles for different R  when 

0.72=Pr  and 0.5=  

 
Fig. 9: Temperature profiles for different Pr  when 

2=R  and 0.5=  

 
Fig. 10: Temperature profiles for different   

when 0.72=Pr , 0.96=Sc  and 2=R  

 
Fig. 11: Concentration profiles for different Sc  

when 0.5=  

thermal boundary layer is thicker and the heat 

transfer is reduced. The temperature and mass 

concentration profiles for different values of time 

  are presented in Fig. 10. It is observed that these 

profiles increase in the vertical channel  as  time 

increases. It is seen from Fig. 11 that the 

concentration profiles increase with an increase in 

Schimdt number Sc . As expected, if all other 

physical parameters are kept constant, the mass 

transfer decreases as Sc  increases, i.e. an increase 

in the value of the Schmidt number Sc  is 

associated with  a decrease in the concentration 

profiles. Further, it may be observed from this 

figure that the effect of Schmidt number Sc  on 

concentration distribution slowly decreases in the 

concentration boundary layer for higher values of 

Sc . 

The  heat and mass transfer rates at the plates 10,=  

are, respectively given by  

 ,),(),(2=)(0, 11

0=

 dGcG

n

' 


 (27) 
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),,(2=)(1, 1

0=

 eH

n

' 


 (28) 

 ,),(),(2=)(0, 11

0=

 ScdGSccGSc

n

' 


 (29) 

),,(2=)(1, 1

0=

 SceHSc

n

' 
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(31) 

and nc = , 1= nd  and 12= ne  

The Numerical results of the heat transfer rate 

)(0, '  and )(1, '  at the plates 0,1=  for 

several values of radiation parameter R , Prandtl 

number Pr  and time   are presented in Figs. 12-

13. It is observed from Figs. 12-13 that the heat 

transfer rates )(0, '  and )(1, '  increase with an 

increase in either radiation parameter R  or Prandtl 

number Pr  or time  . This may be explained by 

the fact that frictional forces become dominant by 

increasing the values of Prandtl number Pr  and 

hence yield the greater heat transfer rate. An 

increase in Prandtl number reduces the thermal 

boundary layer thickness. The Prandtl number 

signifies the ratio of momentum diffusivity to 

thermal diffusivity. The Fluids with lower Prandtl 

number will have the higher thermal conductivities 

so that the heat can diffuse from the plate faster 

than  thefluids with higher Pr  (thinner boundary 

layers). Hence, Prandtl number can be used to 

increase the cooling rate in conducting flows. It is 

clear that the heat transfer rate  is more in the 

presence of thermal radiation. The negative value 

 
Fig. 12: Rate of heat transfer )(0, '  and )(1, '  

for Pr  when 0.5=  

 
Fig. 13: The heat transfer Rate )(0, '  and 

)(1, '  for   when 0.71=Pr  

 
Fig. 14:The mass transfer )(0, '  and )(1, '    

of )(0, '  explains physically that there is the heat 

flow from the hot plate 0=  to the ambient fluid. 

It is observed from Fig. 14 that the mass transfer 

rate )(0, '  decreases while )(1, '  increases 

with an increase in either Schmidt number Sc  or 

time  . 

From an engineering point of view, the most 

important characteristic of the flow is the shear 

stresses at the plate 0,1=  that are, respectively 

given by  
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(34) 

The Numerical values of the non-dimensional 

shear stress at the plates 0,1=  are presented in 

Figs. 15-19 for several values of thermal Grashof 

number Gr , mass Grashof number Gc , radiation 

parameter R , Prandtl number Pr  and time  . 

Figs. 15-16 show that the shear stresses 
0x  and 

1x
  increase with an increase in either thermal 

Grashof number Gr  or mass Grashof number Gc . 

Fig. 17 reveals that the shear stresses 
0x  and 

1x
  

reduce for increasing values of Schmidt number 

Sc . Physically, it is true since an increase in Sc  

serves to decrease momentum boundary layer 

thickness. It is seen from Fig. 18 that the shear 

stress 
0x  reduces while the shear stresses 

1x
   

increases with an increase in Prandtl number Pr . It 

is observed that an increase in the Prandtl number 

results in a decrease of the thermal boundary layer 

thickness and in general lower average temperature 

within the boundary layer. The reason is that 

smaller values of Pr  are equivalent to increase in 

the thermal conductivity of the fluid and therefore, 

the heat is able to diffuse away from the heated 

surface more rapidly for higher values of Pr . 

Hence, in the case of smaller Prandtl number as the 

 
Fig. 15: Shear stresses 

0x  and 
1x  for Gr  

when = 3Gc , 0.96=Sc , 0.71=Pr  and 0.5=  

 
Fig. 16: Shear stresses 

0x  and 
1x  for Gc  

when 5=Gr , 0.96=Sc , 0.71=Pr  and 0.5=  

thermal boundary layer is thicker and the rate of 

hear transfer is reduced. Fig. 17 shows that the 

shear stresses 
0x  and 

1x
  increase as time    

increases. It is also seen that the  shear stresses 
0x  

and 
1x

   reduce  with increasing values of radiation 

parameter R . 

 
Fig. 17: Shear stresses 

0x  and 
1x  for Sc  when 

= 5Gr , = 3Gc , 0.71=Pr  and 0.5=  

 
Fig. 18: Shear stresses 

0x  and 
1x  for Pr  

when = 5Gr , 2.62=Sc , = 3Gc  and 0.5=  
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Fig. 19: Shear stresses 

0x  and 
1x  for time   

when = 5Gr , 0.96=Sc , 0.72=Pr  and 3=Gc  

4.  Conclusion 

The Exact solutions for the unsteady free 

convection flow of an optically dense 

incompressible viscous fluid between two long 

vertical parallel plates with variable temperature 

and mass diffusion in the presence of thermal 

radiation have been obtained by using the Laplace 

transform technique. The effects of the pertinent 

parameters such as the radiation parameter, 

buoyancy forces, Schmidt number and time on the 

fluid velocity and temperature fields and shear 

stresses at the plate have been studied in detail. The 

study shows that these parameters have significant 

impact on the velocity, temperature, mass 

concentration and the shear stresses at the plates. 

The following conclusions are extracted from this 

study: 

   

• An increase in the radiation parameter leads 

to a decrease in the fluid velocity as well as 

the temperature. 

• The fluid velocity and temperature decrease 

with an increase in the Prandtl number. 

• The fluid velocity increases with increases 

in the Grashof number and an increase in 

time leads to increases in the fluid velocity, 

temperature and concentration. 

• It is expected that the results of this study 

will be served as a mechanism to develop 

the design of cooling and energy systems 

and nuclear thermo-hydraulics. 
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