
Introduction 
During recent years the study of convection heat 

and mass transfer in non-Newtonian fluids has 

received much attention and this is because the 

traditional Newtonian fluids can not precisely 

describe the characteristics of the real fluids. The 

couple- stress fluids introduced by Stokes [1-2] have 

distinct features, such as the presence of couple 

stresses, body couples and non-symmetric stress 

tensor. The couple-stress fluid theory presents 

models for the fluids whose microstructure is of 

mechanical significance. The effect of very small 

microstructure in a fluid can be felt if the 

characteristic geometric dimension of the problem 

considered is of the same order of magnitude as the 

size of the microstructure. The main feature of the 

couple stresses is that they introduce a size-

dependent effect. Classical continuum mechanics 

neglects the size effect of material particles within 

the continua. This is consistent with ignoring the 

rotational interaction among particles, which results 

in symmetry of the force-stress tensor. However, in 

some important cases such as fluid flow with 

suspended particles, it can not be true and a size-

dependent couple-stress theory is needed. The spin 

field, due to microrotation of freely suspended 

particles,set up an antisymetric stress, known as 

couple-stress, leading to a couple-stress fluid. These 

fluids are capable of describing various types of 

lubricants, blood, suspension fluids, etc. The study of 

couple-stress fluids has a wide range of applications 

in various industries such as the extrusion of polymer 

fluids, solidification of liquid crystals, cooling of 

metallic plate in a bath and colloidal solutions, etc. 

Convective flows with radiation are also applied in 

many industrial processes such as heating and 

cooling of chambers, energy processes, evaporation 

from large reservoirs, solar power technology and 

space vehicle re-entry. 

The boundary layer flow over a stretching sheet in 

a uniform stream of fluid has been studied 
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A B S T R A C T 
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extensively in fluid mechanics. A large number of 

studies has been done in the area of boundary layer 

flow over a continuous stretching surface with regard 

to its numerous industrial and engineering 

applications. It occurs frequently in manufacturing 

involving hot metal rolling, wire drawing, producing 

glass-fiber, producing paper, drawing of plastic 

films, manufacturing foods, crystal growing, liquid 

films in condensation process and metal spinning, as 

well as metal and polymer extrusion processes 

(Fisher [3]). The flow and heat transfer over a 

stretching sheet have tremendous industrial 

applications, for instance, in the extrusion of a 

polymer sheet from a die. In the process of 

manufacturing such sheets, the melt issues from a slit 

are subsequently stretched. The rates of stretching 

and cooling have a significant influence on the 

quality of the final product with desired 

characteristics. The aforementioned processes 

involve cooling of a molten liquid by drawing it into 

a cooling system. The desired properties for the 

product of such process mainly depend on two 

characteristics:the first is the cooling liquid used and 

the other is the rate of stretching. The liquids of non-

Newtonian characteristics can be chosen for as a 

cooling liquid as their flow and hence the heat 

transfer rate can be regulated through some external 

means. The optimal rate of stretching is important, as 

rapid stretching results in sudden solidification, 

thereby destroying the properties expected from the 

product. 

After the pioneering study of Sakiadis [4] and 

Crane [5], a large number of studies on a stretching 

sheet have been published by considering various 

governing parameters such as suction/injection, 

porosity, magnetic field parameter, and radiation 

with different types of fluids such as Newtonian, 

non-Newtonian, polar, and couple stress fluids. 

However, the abundant literature on the boundary 

layer flow over a stretching sheet is limited to 

Newtonian and some non-Newtonian fluids flow 

with traditional no-slip flow boundary condition over 

various stretching geometries such as linear and non-

linear stretching sheet and a little attention is given 

to stretching sheet with slip boundary condition. 

However, the fluids with micro-scale or nano-scale 

dimensions have flow behavior that greatly differs 

from the traditional fluid flow characteristics and 

belongs to the slip flow regime. For the flow in the 

slip regime, the fluid motion still obeys the Navier-

Stoke's equations, but with slip velocity, temperature 

and concentration boundary conditions. For instance, 

the flow in many applications of micro/nano systems 

such as hard disk drive, micro-pump, micro-valve 

and micro-nozzles is in slip transition regime, which 

is characterized by slip boundary at the wall. 

Several researchers have considered various 

aspects of momentum and heat transfer 

characteristics in boundary layer flow over a 

stretching boundary (Gupta and Gupta [6], Rajagopal 

et al. [7], Siddappa and Abel [8], Andersson [9], 

Kumaran and Ramanaiah [10], Wang [11] and 

Cortell [12]). Flow of elastico-viscous fluid induced 

by a stretching sheet with slip has been presented by 

Ariel et al. [13]. Akyildiz et al. [14] have discussed 

the diffusion of chemically reactive species in a 

porous medium over a stretching sheet. Wang [15] 

have made an analysis of viscous flow due to a 

stretching sheet with surface slip and suction. Fang 

et al. [16-17] have obtained the exact solution of an 

MHD slip flow over a stretching sheet. The thermal 

boundary layers over a shrinking sheet have been 

analytically studied by Fang and Zhang [18]. The 

heat transfer characteristics in a visco-elastic 

boundary layer flow over a stretching sheet have 

been analyzed by Arnold el al.[19]. Shantha et al. 

[20] have presented the free convection flow of a 

conducting couple stress fluid in a porous medium. 

Srinivasacharya and Kaladhar [21] have conducted a 

study of a mixed convection flow of couple stress 

fluid in a non-darcy porous medium with Soret and 

Dufour effects. The second-order slip flow and heat 

transfer over a stretching sheet with non-linear 

Navier boundary condition have been numerically 

investigated by Nandeppanavar et al.[22]. Singh and 

Makinde [23] have studied an MHD slip flow of 

viscous fluid over an isothermal reactive stretching 

sheet. Hayat et al. [24] have presented the 

stagnation-point flow of couple stress fluid with 

melting heat transfer. Turkyilmazoglu [25] has 

obtained an exact solution for two-dimensional 

laminar flow over a continuously stretching or 

shrinking sheet in an electrically conducting 

quiescent couple stress fluid. The MHD flow and 

heat transfer of an exponential stretching sheet in a 

Boussinesq-Stokes suspension have been examined 

by Siddheshwar et al. [26]. Salema et al. [27] have 

studied the hydromagnetic flow of Cu- water 

nanofluid past a moving wedge with viscous 

dissipation. Zhu et al. [28] have presented the 

second-order slip MHD flow and heat transfer of 

nanofluids with thermal radiation and chemical 

reaction. Sheikholeslami et al. [29] have investigated 

the magnetic nanofluid forced convective heat 

transfer with variable magnetic field using two-phase 

model. The effect of non-uniform magnetic field on 

forced convection heat transfer of Fe 3 O 4 - water 

nanofluid has been examined by Sheikholeslami et 

al. [30]. Kandelousi [31] has studied the effect of 

spatially variable magnetic field on ferrofluid flow 

and heat transfer considering constant heat flux 

boundary condition. Sheikholeslami and Ganji [32] 

have presented the nanofluid flow and heat transfer 

between parallel plates considering Brownian motion 

using DTM. The effect of thermal radiation on a 

magnetohydrodynamic nanofluid flow and heat 

transfer has been examined by Sheikholeslamia et al. 

[33]. Sheikholeslami [34] has presented the forced 

convective heat transfer in a semi- annulus under the 

influence of a variable magnetic field. 



      S. Das/ JHMTR 1 (2016) 21-30                                                                            23 

In the present study, the free convective slip flow 

induced by a vertical linearly stretching sheet in 

couple stress fluid is presented in the presence of 

thermal radiation by adopting the Cogley- Vincenti-

Gilles equilibrium model introduced by Cogley et al. 

[35]. The sheet surface is isothermal. The partial 

differential equations governing the flow are 

transformed into ordinary differential equations 

using the similarity transformation and are 

numerically solved. The interplay between pertinent 

parameters is explained using graphs. 

 

1. Mathematical Formulation 

A steady slip flow of a viscous incompressible 

couple stress fluid over an isothermal vertical 

linearly stretching sheet is considered. A Cartesian 

co-ordinate system with x-axis along the sheet is 

chosen and the y-axis is normal to it (see Fig.1). The 

sheet stretches in its own plane with the velocity

wU a x  , (> 0)a  being a constant known as 

stretching rate. The sheet surface is heated by the 

temperature Tw while the temperature of the ambient 

cold fluid isT∞. All the fluid properties are assumed 

to be constant except the density in the buoyancy 

term of the momentum equation. 

The Stokes constitutive model for the couple 

stresses is used. Under the usual Boussinesq's 

approximation, the free convection flow of a 

radiating couple stress fluid is governed by the 

following system of equations: 
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Where u  and v  are the velocity components along 

the x and y-directions, respectively,  T is the 

temperature of the fluid, gis the acceleration due to 

gravity, μ: the dynamic viscosity of the fluid,  : the 

kinematic viscosity,   : the couple stress viscosity, 

 : the fluid density, k: the thermal conductivity,  : 

the thermal expansion coefficient,cP: the specific 

heat at constant pressure andqr: the radiative heat 

flux. The asymptotical case as 0    which 

corresponds to the purely Newtonian case. The 

boundary conditions arethe following: 

Where L denotes the slip coefficient and Tw is the 

temperature of the sheet. WhenL = 0, the no-slip 

condition is recovered. 

It has been shown by Cogley et al. that in the 

optically thin limit for a non-gray gas near 

equilibrium, the following relation holds: 
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(5) 

Where K 


 is the absorption coefficient,  

is the 

wave length, e
p

is the Planck's function and the 

subscript 'w   indicates that all quantities have been 

evaluated at the temperature 
wT  which is the 

temperature of the stretching sheet. Thus, our study 

is limited to small difference of surface temperature 

to the fluid temperature. Greif et al. [36]showthat for 

an optically thin limit, the fluid does not absorb its 

own emitted radiation, it means that there is no self-

absorption, but the fluid does absorb radiation 

emitted by the boundaries. Thetreatments to the 

radiative heating are either in the limit where photon 

mean free paths are very small, called optically thick 

or very long, called optically thin. At high 

temperature the presence of thermal radiation alters 

the distribution of temperature in the boundary layer, 

which in turn affects the heat transfer at the channel 

walls. 

On the use of equation (5), the equation (3) 

becomes 
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The continuity equation (1) is satisfied by 

introducing a stream function ( , )x y  such as  
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The following similarity variables are also 

introduced 
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Where   is the independent similarity variable, 

( )f  is the non-dimensional stream function and 

( )  is the non-dimensional fluid temperature. 

Substituting the equation (9) into equations (2) and 

(6), we obtain the following ordinary differential 

equations: 
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Fig. 1 The geometry of the problem 
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the Prandtl number which measures the ratio of 

momentum diffusivity to the thermal diffusivity. 

The corresponding boundary conditions are  
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Where =
a

L


 is the velocity slip parameter. The 

no-slip case is recovered for = 0 . In theabsence of 

thermal radiation ( = 0R ) and neglecting viscous 

dissipation ( E = 0c ) and slip condition ( = 0 ), the 

present problem reduces to the problem considered 

by Siddheshwar et al. [26]. It is observed that the 

trends of the velocity profiles are similar in the 

absence of Chandrasekhar's number ( = 0Q ) as well 

as heat source/sink ( = 0 ) in the case of the 

prescribed surface temperature. 

 

2. Numerical Solution 

It is well-known that most boundary layer 

transmission problems are described by a set of 

nonlinear partial differential equations. However, 

due to the strongly nonlinear and unconventional 

nature of these problems, the solving processes are 

extraordinarily complex, and the effective solutions 

are hardly obtained. Recently, various methods have 

been tried to solve these problems. The non-

dimensional ordinary differential equations (10) and 

(11) with boundary conditions (12) are solved 

numerically. The highly nonlinear momentum 

boundary layer equation and the thermal boundary 

layer equation are converted into similarity equations 

and then solved numerically using the modified 

fourth-order Rung-Kutta method with shooting 

technique [37]. Rung-Kutta method is the fourth-

order method meaning that the local truncation error 

is of order 
5( )o   whereas the total accumulated 

error is of order 
4( )o  . This is a usual case that, 

the truncation error also includes discretization error, 

which is the error that arises from taking the finite 

number of steps in the computation to approximate 

an infinite process. The resulting higher order 

ordinary differential equations are reduced to first-

order differential equations by letting  
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Thus, the corresponding coupled higher order 

non-linear differential equations become: 
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With the boundary conditions:  
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1 2 3

3 4
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Whereb, cand d are unknown which are to be 

determined as a part of the numerical solution. In the 

shooting method, the unspecified initial conditions b, 

cand d are assumed and equation (14) is integrated 

numerically as an initially valued problem to a given 

terminal point. The accuracy of the assumed missing 

initial condition is checked by comparing the 

calculated value of the dependent variable at the 

terminal point with its given value there. If a 

difference exists, the improved values of the missing 

initial conditions must be obtained and the process is 

repeated. The numerical computations are done by 

MATLAB bvp4c routine. The step-size is taken as 

= 0.01 . The process is repeated until we get the 

results correct up to the desired accuracy of 
610
 

level. 

 

3. Results and Discussion 

In order to get a physical insight of the problem, we 

illustrate the effects of the pertinent parameters, 

namely couple stress parameter 2C , Grashof number 

Gr , radiation parameterR, Prandtl number Pr , 

Eckert number Ec  and slip parameter   on the 

fluid velocity, temperature, shear stress and rate of 

heat transfer. Prandtl number ( Pr ) is chosen as the 

values ranging from 0.72 P 7.1r   which are the 

most encountered fluids used in industries. E = 0c  

presents no Joule and viscous heating. For a large 

value of slip parameter   which corresponds to a 

very small x  at the leading edge, the boundary layer 

assumption is not appropriate, i.e. the boundary layer 

equations become inaccurate. Also, the Knudsen 

number is greater than 0.1 for a large   and hence 

the Navier-Stokes equation fails to model the flow 

regime. We therefore limit the discussion in this 

study to a relatively small range of   from 0 to 2.5 

as this range  exhibits the slip flow region. The 

default values of the other parameters are mentioned 

in the description of the respective figures. 

 

 

4.1. Effects of parameters on stream function 

 

Figs.2-3 present the stream function for several 

values of Grashof number Gr  and Eckert number 

Ec . It is seen from these figures that the stream 

function increases with an increase in either Gr  or 

Ec . Figs.4-6 reveals that the stream function 

decreases with an increase in either couple stress 

parameter C  or radiation parameter R  or Prandtl 

number Pr . 

 

 

4.2. Effects of parameters on velocity profiles 
 

Figs.7-8 show that the fluid velocity increases with 

an increase in either Grashof number Gr  or Eckert 

number Ec . Physically speaking, the Grashof 

number signifies the relative importance of buoyancy 

force to the viscous hydrodynamic force. 

 

 
Fig. 2 The non-dimensional stream function for different 

Gr  when = 0.5C ,   = 2R , G = 5r , P = 0.72r , 

E = 0.5c  and 
= 0.1

 

 

 
Fig. 3 The non-dimensional stream function for different 

Ec  when = 2R , G = 5r , P = 0.72r , = 0.5C  

and = 0.1  

 

 
Fig. 4 The non-dimensional stream function for different 

C  when = 0.5C ,   = 2R , G = 5r , P = 0.72r , 

E = 0.5c  and = 0.1  
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Fig.5 The non-dimensional stream function for different 

R  when = 0.5C ,  G = 5r , P = 0.72r , E = 0.5c  

and = 0.1  

 

 

Larger Grashof number indicates lower viscous 

effects in momentum equation. For higher values of 

Gr , the fluid velocity overshoots the sheet velocity 

in the regions close to the surface of the sheet. 

Physically, G > 0r  means heating of the fluid by 

cooling the boundary surface. It is also revealed that 

the momentum boundary layer thickness reduces as 

the Grashof number Gr  increases and it increases 

astheEckert number Ec  increases. The Eckert 

number Ec  expresses the relationship between the 

kinetic energy in the flow and the enthalpy. It 

embodies the conversion of kinetic energy into 

internal energy by work done against the viscous 

fluid stresses. Greater viscous dissipative heat causes 

a rise in the fluid temperature and hence the fluid 

velocity enhances. Fig.9 reveals that the fluid 

velocity decreases near the sheet surface and 

increases away from the surface of the sheet with an 

increase in the couple stress parameter C . This 

means that the increasing values of C result in 

thickening of the momentum boundary layer. 

Expectedly, the couple stresses enhance the fluid's 

intermolecular cohesion. This increases the fluid's 

resistance to shear stress, resulting in adecrease in 

velocity. Fig.10 depicts the effects of the radiation 

parameter R  on the velocity profile. The fluid 

velocity decreases for increasing the values of R . 

The thermal radiation has increased the momentum 

boundary layer thickness. Fig.11 presents the fluid 

velocity profiles for several values of Prandtl number 

Pr . The thickness of the momentum boundary layer 

is also greater. The reason for such a behavior is that 

an increase in the Prandtl number is due to an 

increase in the fluid viscosity, which makes the fluid 

thick, thus decreasing its velocity. It is seen from 

Fig.12 that the fluid velocity decreases with an 

increase in the slip parameter  . Physically, when 

slip occurs, the slipping fluid shows a decrease in the 

surface skin-friction between the fluid and the 

stretching sheet because not all the pulling force of 

the stretching sheet can be transmitted to the fluid. 

So, increasing the value of   decreases the fluid 

velocity in the region of the boundary layer. 

 

 

4.3. Effects of parameters on temperature 

profiles 
 

Figs. 13-15 illustrate the temperature field against 

thecoordinate  . The fluid temperature is the 

highest at the sheet and decreases asymptotically to 

zero far away from the sheet satisfying the boundary 

conditions. Figs. 13 and 14 present the profiles of the 

fluid temperature for several values of radiation 

parameter R  and Prandtl number Pr . 

 

 

 

 
Fig.6  The non-dimensional stream function for different 

R  when = 0.5C ,  G = 5r , P = 0.72r , E = 0.5c  

and = 0.1  
 

 

 
Fig.7  The velocity profile for different Gr  when 

= 0.5C , = 2R ,   P = 0.72r , E = 0.5c  and 

= 0.1
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Fig.8  The velocity profile for different Ec  when = 2R , 

G = 5r ,  P = 0.72r , = 0.5C  and = 0.1  

 

 

 

Fig. 9  The velocity profile for different C  when 

= 2R , G = 5r ,  P = 0.71r , E = 0.5c  and 

= 0.1
 

 

 

 
Fig.10: The velocity profile for different Pr  when 

G = 5r , P = 0.72r ,  = 0.5C , E = 0.5c  and 

= 0.1
 

 

 

 

 
Fig.11  The velocity profile for different Pr  when 

= 0.5C , G = 5r ,  = 2R , E = 0.5c  and = 0.1  

 

 

Fig.12  The velocity profile for different   when G = 5r

, P = 0.72r ,  = 0.5C , = 2R  and E = 0.5c  

 

An increase in the thermal radiation R  causes a 

decrease in the fluid temperature within the 

boundary layer and consequently the thermal 

boundary layer thickness decreases as shown in Fig. 

13. Thetemperature decreases with anincrease in the 

radiation parameter as therelease of heat energy from 

the flow region is also increased, resulting in 

adecrease in the fluid temperature. It is seen from 

Fig.14 that the fluid temperature decreases with an 

increase in the Prandtl number Pr . From this figure 

it is noticed that an increase in the Prandtl number 

results in a decrease in temperature. The reason is 

that thesmaller values of the Prandtl number are 

equivalent to increasing thermal conductivity and 

therefore heat is capable of diffusing away from the 

heated surface more rapidly than at thehigher values 

of Pr . Thus, the temperature falls more rapidly for 

water than for air and electrolyte solution. An 

increase in the Pr causes a decrease in the thermal 

boundary layer thickness. Fig. 15 illustrates the 

influence of Eckert number Ec  on temperature in 

the boundary layer. The fluid temperature increases 

with an increase in theEckert number Ec . 

TheEckert number is the ratio of the kinetic energy 
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of the flow to the boundary layer enthalpy 

differences. It represents the conversion of the 

kinetic energy into the internal energy by work done 

against the viscous fluid stresses. The positive Eckert 

number means cooling of the surface of the 

stretching sheet, i.e loss of heat from the surface of 

the stretching sheet to the fluid. Hence, greater 

viscous dissipative heat causes a rise in the fluid 

temperature. Furthermore, it can be observed that the 

thermal boundary layer thickness becomes thicker 

for the increased Eckert number. The maximum 

temperature occurs in the vicinity of the surface of 

the stretching sheet and then the temperature 

asymptotically approaches to zero in the free-stream 

region. 

 

4.4. Effects of parameters on shear stress and 

rate of heat transfer 
 

For engineering purposes, one is usually 

interested in the values of the shear stress (or skin 

friction) and the heat transfer rate. The shear stress is 

an important parameter in the heat transfer studies, 

since it is directly related to the heat transfer 

coefficient. The increased shear stress is generally 

viewed as a disadvantage in the technical 

applications, while the increased heat transfer can be 

exploited in some applications. Numerical values of 

the rate of heat transfer (0)'  and the shear stress 

(0)''f  at the surface of the sheet = 0  are 

entered in the Table 1 for several values of C , R , 

Gr , Pr , Ec  and  . The shear stress (0)''f  

reduces with an increase in C , Pr  and Ec  while it 

enhances with an increase in either R  or Gr  or  . 

This may be attributed to a rise in the velocity 

gradient at the surface of the sheet due to the 

buoyancy force. An increase intheshear stress is 

observed with an increase in the thermal radiation. 

As expected, a fall in the fluid temperature due to a 

rise in thethermal radiation enhances the fluid 

viscosity, leading to an increase in the shear stress. A 

decrease in shear stress is noticed as Eckert number 

Ec increases. This may be explained by stating 

that,anincrease in thefluid temperature due to the 

viscous heating may decrease thefluid viscosity, 

since viscosity is temperature dependent. It is also 

concluded from Table 1 that both friction factor and 

surface heat flux reduce with an increase in the value 

of Pr . This is expected, since an increase in the 

value of Pr  decreases thethermal diffusivity of the 

fluid and it also reduces the magnitude of 

thefrictional force between the viscous layers. 

Consequently,the shear stress reduces. Physically, 

the negative value of (0)''f  means the stretching 

sheet exerts a drag force on the fluid and the positive 

value means the opposite. 

 
Fig.13  The temperature profile for different R  when 

P = 0.71r  and E = 0.5c  

 

 
Fig.14  Thetemperature profile for different Pr  when 

= 2R  and E = 0.5c  

 

 
Fig.15 The temperature profile for different Ec  when 

= 2R  and P = 0.72r  

 

It is seen from the Table 1 that the rate of heat 

transfer (0)'  increases for increasing values of C  

or R  or Gr  while it decreases for increasing values 

of Pr  or Ec  or  . Due to the influence of thermal 

radiation, the temperature gradient increases which 

ultimately enhances therate of heat transfer. 

Therefore, thermal radiation plays an important role 

in augmenting heat transfer rate or in other words it 

acts as a heat source. Thus, increasing the couple 

stresses and buoyancy force implies more 

intermolecular cohesion which generates more heat 

leading to an increase in the temperature which in 

turn causes an increase in the rate of heat transfer. 

On the other hand, (0) < 0'  means the heat transfer 

takes places from the surface of the sheet to fluid. 
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Table 1. The rate of heat transfer 
(0)'

 and shear stress 
(0)''f

 at the sheet 
= 0

. 

C  R  Gr  Pr  Ec  


 (0)'
 

(0)''f
 

 

0.5 2 5 0.72 0.5 0.1 0.72691 1.55029 

1.0 2 5 0.72 0.5 0.1 0.85015 1.53812 

1.5 2 5 0.72 0.5 0.1 0.88136 1.53456 

 

0.5 1     0.70732 1.27084 

0.5 1.5     0.71752 1.41428 

0.5 2     0.72691 1.55029 

 

  3    0.82251 1.54067 

  4    0.77469 1.54565 

  5    0.72691 1.55029 

 

   0.72   0.72691 1.55029 

   2   0.72016 1.47688 

   3   0.71505 1.42013 

 

    0.0  0.74004 1.66408 

    0.5  0.72691 1.55029 

    1.0  0.71367 1.43867 

 

     0.05 0.76583 1.54306 

     0.5 0.51824 1.58209 

     1.5 0.30328 1.60229 

 

 

4. Conclusion 

The boundary layer slip flow of couple- stress fluid 

past a vertical stretching sheet in the presence of 

thermal radiation has been numerically investigated. 

Using similarity transformations the governing 

equations of the problems are transformed into non-

linear ordinary differential equations and solved for 

local similar solutions using shooting iteration 

technique together with fourth-order Runge-Kutta 

integration. The main results of the present study are 

summarized as follows:  

 Fluid velocity enhances due to the buoyancy 

force and the momentum boundary layer thickness 

reduces due to an increase in the values of Grashof 

number .  

 Fluid velocity is retarded due to the slip 

parameter.  

 Fluid velocity reduces in the presence of thermal 

radiation.  

 Effects of the thermal radiation and the Prandtl 

number are to decrease the thermal boundary layer 

thickness. 

 The combination of the couple stress parameter, 

the slip parameter and the Eckert number greatly 

affects the fluid flow and shear stress on the surface 

of the stretching sheet.  
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